

Solar Energy Application Lab (SEAL)

SEAL is a research organization under RMIT university that focuses on applied research to enable the integration of solar energy in buildings and suburban. We concentrate on practical solutions and collaboration with stakeholders to become a key player in the field of solar energy research and development.

SEAL is a member of Australian PV Institute, a member of the Australian National Mirror Committee for International Electrotechnical Commission (IEC) TC 82 Solar photovoltaic energy systems, and represents Australia in International Energy Agency (IEA) collaborative programs: the Photovoltaic Power Systems Programme (PVPS) Task 15 Enabling Framework for the Development of BIPV, and the Solar Heating and Cooling Programme (SHC) Task 66 Solar Energy Buildings. The lab also has developed the first BIPV design tool in Australia.

MEMBERS

>20 researchers from various backgrounds including architecture, civil engineering, electrical engineering, fire engineering, mechanical engineering, computer science, construction and project management.

Skills: Auto CAD, CAD 3D, Rhino, Revit, SPACE GASS, Ansys, PyroSim, ArcGIS, QGIS, PowerFactory, EnergyPlus, SIMULINK, MATLAB, Python, Machine learning, Optimization, Block-chain, Socio-economic assessment

RESEARCH DOMAINS

- Building integrated solar energy
- Solar enabled community/industry decarbonization
- Solar energy in urban scale

Contact us 🖂 sealsolarlab@rmit.edu.au

Building integrated solar energy

SEAL conducts research on a range of topics related to the integration of solar energy in buildings:

- BIPV product database
- Building and construction standards & regulations
- BIPV design modelling, simulation and optimization
- Technical feasibility and economic viability
- Decision making and data mining
- IFC enabled BIPV product digital process
- Mounting system design and optimization
- BIPV product performance
 - o e.g., Fire safety, Solar Heat Gain Coefficient (SHGC)
- Policy support

Solar enabled community/industry decarbonization

SEAL projects contribute to the decarbonization of communities and industries by empowering them to generate their own energy and reduce their dependence on centralized power plants and distribution networks. This can lead to a more sustainable, resilient. and decentralized energy system that benefits both the environment and the local economy.

VIRTUAL POWER PLANT

Conducting urban/community level virtual power plant (VPP) simulation and analyses to provide renewable energy and load management strategies and decision-making supports for high demand user.

DEMAN RESPONSE AND ENERGY FLEXIBILTITY

Investigating the load management and energy trading strategies that support the renewable transition and energy efficiency of high energy users while also benefitting the electricity grid.

GAME THEORY

Applying game theory in P2P trading to gain better understanding of the behaviour of buyers and sellers in P2P energy markets.

GEOSPATIAL MAPPING AND DEEP LEARNING

Analyzing patterns of energy consumption in buildings and inform decision-making related to a wide range of urban planning and design.

		10 Miles 10	- Strike	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	- 10.00, B*	
	-124					ŀ
100.0						
		-	-			
-						
		-	-			
	1000000		-	-		

Solar energy in urban scale

SEAL's research in solar energy in urban scale includes the development of advanced modeling, simulation, and optimization tools to analyze the technical feasibility and economic viability of solar energy systems in urban areas. This includes the use of machine learning-based algorithms to analyze building images and identify suitable locations for the installation of solar panels on buildings, as well as the development of sophisticated tools to analyze the performance and efficiency of solar energy systems in urban environments.

SEAL is helping to improve the use of renewable energy and promote more sustainable infrastructure development. We are interested in the application and deployment of infrastructureintegrated PV systems, such as noise barriers that incorporate PV panels. In the urban environment, infrastructure-integrated PV systems have great potential to provide a significant source of renewable energy.

	Weather	Technical	Gri	Grid System component		ents	Losses
	Solar irradiation	-	Grid type		PV modules		DC/AC losses
Geo-physical	Temperature	{0;m	Grid voltage		Inverters		Shading losses
Torrain	Humidity		Number of phase		Mounting /forms sy	stems	Soiling losses
Terrain	Wind		Displacement p	ower factor	Energy storage	e	Snow losses
City	Snow		Feed-in power	r clipping	Other BOS compo	nents	Irradiance losses
Open terrain	Rain fall patterns	Building pl	hysics			Operatio	n and maintenance
Finiaciana	Environmental	Building type		Constructior	n & commissioning	Mon	itoring & control
Emissions	-000	Interactive design	n	Installation pr	OCESS	0 8	M procedures
Embedded CO ₂ emissions		Structural load		Commissionir		Warranti	es and replacement
CO ₂ emissions	Coz	Energy load/user	r profile	A codes Health and safety Ad Impact on schedules			Insurance
		Buildings/objects	ds & co <mark>des</mark>				commissioning
Heat islar	nd effect	Building thermal	load				alvage value
						Decomr	nissioning process
Economical	Govern	ment incentives	Finan	ce modes/ Cc	ontract		BIPV project
	Renewa	ble energy certifica	ates Direct	arrangements Direct finance			Design and
Benefit	ts Feed in	tariffs	Fully c	owned or lease	d by a t <mark>h</mark> ird party	N	lanagement
Reduction of energy bills Finance and loan			Financ	ed by a third pa	arty and lease		
Building material cost offsets			arrang	ement made wi	ith building owner BOQ prices		
Reduction of	Einanci	al performance	Payback perio	bd	Installation cost		
	evaluat	ion	NPV/IRR/RO	Icat	O & M cost		
Reduction of car	rbon cost		LCOE		Life cycle cost		

Wijeratne, W.P.U., Yang, R.J., Too, E. and Wakefield, R., 2019. Design and development of distributed solar PV systems: Do the current tools work?. *Sustainable cities and society*, *45*, pp.553-578.

■ Europe ■ Asia ■ Oceania ■ North America ■ South America

UNIVERSITY

Solar Energy Application Laboratory

				Solar irradiati	on		
itakeholders	: Façade engi	neers, Architects, El	ectrical	engineers, BIPV sy	stem installers, P	V consultants, ESD cons	ultants, Academics
Deve	loping build	ing model			Solar in	radiation analysis	
Identifying project location Google maps IP addresse s Manually selected from a list Photorealistic Autode Sketch Rhino Autode 3 D stu Lumior SUPO plugin MicroS KetSh	Creating buil surround 2D • CAD software visualisation esk Revit up esk Maya dio max , dium rendering for SketchUp itation a ct	ding geometry and ing environment 3D • CAD or BIM software • GIS modelling • CAD or BIM software with LiDAR assisted point cloud data Data exchange formats • Autodesk Bexitod • Open BIM (ISO) ifc • SketchUlo.sko Models for higher spatial resolutions • Custom made tools	→	Weather 1 • Irradiance • Beam • Offlust • Offlust • Offlust • Temperature • Wind speed Type of weather dat • Long-term avera • Ground mountle • Satellife based m • Measured at site • Hybrid Weather data step values • Conceptual design – Annual • Detailed design – Hourly	Arameters Verification Addition A	Model for POA estimation POA with shading and ground reflected (Albedo) POA sky diffused Ray tracing with radiosity Ray tracing with rasterization POA sky diffuse model Isotropic Sky Diffuse Model Hay and Davies Sky Diffuse Model Reindl Sky Diffuse Model Perez Sky Diffuse Model	Methods for shading approximations • Ray tracing • Shading percentage • Far field shading horizon map • Near field shading factor • Sky view factor • Reduction of incident irradiation • Shading index • Software for estimating POA irradiation EMSdar, IES VE, PVsyst, TAS, Revit Solar, PV Watt, Pleiades, Helioscope, PV GIS, <u>Radiance</u> and SAM
ep 2							
	Stakeboldere	- Electrical angineer	l Arabi	Power output ana	alysis DV concult	onto and Dronarty manag	
	Stakenoiders	. Lieculcal engineer	s, Arcill	iecis, rayaue engi	incers, r v consulta	anta, and Froperty Mallag	Jero
Importing properties of technical components of BIPV • BIPV component database in software • Online platform Add manually				calculating DC outpu re model leudenreich et al. (2008) Performance Model (SAF el (LFM) el	it of BIPV M)	Software for calculating ElMsolar PVsyst PV'sol SAM Reference	DC output of BIPV

Step 3

Building performance

Stakeholders: Architects, Electrical engineers, Mechanical/Structural Engineers, Fire engineers, Façade engineers, PV consultants, ESD consultants, Property managers and Academics

Building energ	y consumption		BIPV impact of	on building factors
Models for identifying the energy consumption patterns • Calculating the watt hour data	Suitable interval for energy consumption data • The conceptual design phase – Annual and monthly		Structural loads considered for BIPV designs dead load, wind load, snow load, live load and seismic load, live load, rain load	Methods for thermal impact of BIPV designs Calculate manually Use building simulation software (e.g. IES VE, Energy/Elus, Design/Eulder)
Use historical information electricity bills Simulation software to identify building energy demand (e.g. IES VE, Energy(2lus)	Detailed design phase – hourly and daily Data file formats for building energy consumption		Calculate manually Use software for structural load calculation (e.g. proprietary software, SnaceGass. RISA) Methods/software for daylight	Software for fire related impact Fire Dynamics Simulator (FDS) Thermal Radiation Analysis (TRA) Proprietary software
Measure building energy consumption Percentage of monthly energy consumption based on the usage	Consumption Text file MS Excel Spreadsheet Comma Separated Values (CSV)		impact Calculate manualty Use building simulation software (e.g. IES <u>VE</u> , <u>Radiance</u> , <u>DiXA</u> , Grasshopper)	Methods/software for heat island impact Rhino and Grasshopper CnetwClus Note: Envi-met

Step 4

Financial and design outcome

Stakeholders: Developers, ESD consultants, PV consultants, Academics and Property managers

Assessing economic and environmental feasibility												
Economic • NPV • ROI • PB • IRR • DPB • LCOE	Economic Lifecycle cost of BIPV IPV OI O B B C C P B C C C C C C C C C C C C C C		Lifecycle income of BIPV Saving from energy self- consumption Income from feed in tariffs Salvage value Savings from reducing building thermal loads									
Emissions avoided Embodied emissions												
Decision making												

Optioneering /decision making methods

Multiple solution comparisons using parametric workflows

- Multiple solution comparisons using traditional workflows
- Multiple solution comparisons using integrated optimization
- Cost Thermal impact Aesthetics
 - Constructability

Energy generation

Maintenance requirements

Reduction of CO₂ emissions

. Building value . Structural, fire, electrical and thermal safety

Factors for optimum design of BIPV

Lighting

Yang et al., 2022, BIPV Digitalization: Design Workflows and Methods – A global survey, IEA PVPS, https://iea-pvps.org/research-tasks/enabling-framework-for-thedevelopment-of-bipv/

Wijeratne, W.P.U., Yang, R.J., Too, E. and Wakefield, R., 2019. Design and development of distributed solar PV systems: Do the current tools work?. *Sustainable cities and society*, *45*, pp.553-578.

Improvements

Terrain Weather Grid	Information	 Detailed local meteorological data and local geographic/terrain data Localised PV system product database (e.g. panel, storage, BOS) Localised cost data on PV system products and installation Localised energy price data Accurate energy consumption data Information on local building regulations and codes Information on local government incentives and policies Information on financial modes and contract arrangements Database on previous project examples Information on installers' track record and experiences Information on commissioning and O&M procedure Information on decommissioning procedures 	
Building Physics	EfficieGene	ent 3D model creation of the physical environment gration and comparison of alternative PV module designs	
	 Visua 	lization of shading impact and losses	
	Autor	matic PV system configuration and optimization	
	 Accur 	rate energy consumption data simulation	
System Component	 Instal 	lation process simulation and impact analysis (e.g. impact of harsh weather conditions, occupational health	
	and sa	afety risks etc. on the project completion and cost)	
Loss	 Matcl 	hing and optimizing energy outputs with fluctuating demands and electricity prices	
Constructio	 Balan 	ncing revenue against cost to optimise PV module and storage sizes	
	 Analy 	rsis on environmental impact (carbon footprint, heat island)	
Maintenan Decommiss	 Lifecy 	cle cost-benefit analysis	

_

Simulation and analysis

ffect

Wijeratne, W.P.U., Yang, R.J., Too, E. and Wakefield, R., 2019. Design and development of distributed solar PV systems: Do the current tools work?. *Sustainable cities and society*, *45*, pp.553-578.

The Building Integrated Photovoltaics (BIPV) Enabler tool is a user friendly platform that integrates product, regulation, technical, economic and construction data to create a leading BIPV solution in conceptual building design stage.

Wijeratne, W.P.U., Yang, R.J., Too, E. and Wakefield, R., 2019. Design and development of distributed solar PV systems: Do the current tools work?. *Sustainable cities and society*, *45*, pp.553-578.

Building Type and Location

Building Modelling and Simulation

Selected location: -37.7886, 14

Product Selection Report Generation

BIPV Enabler Report

PV Module Name	Attribute	Value
Module_4	Manufacturer	Company M
	BIPV Cell Technology	po-c-Si
	Module Length (m)	1.33
	Module Width (m)	1.33
	Module Colour	black
	Module Transparency	semi_transparent
	System Size (kW)	8.16
	First year energy (kW)	18829.824367580622
	Life cycle Cost (LCC) (AUD)	21274.96
	Life Cycle Energy (LCE) (kW)	443554.0
	Payback period (Years)	5.919
	Net Present Value (NPV)	26699.8898
	Capital Cost (AUD)	17426.82
	Levelized cost of electricity (LCOE)	0.0565
	No of PVs	68
	Total PV Area (sqm)	120.2852
	Carbon Emission Factor	0.98
	Carbon Emissions	434682.92
BIPV_	Manufacturer	Company M
	BIPV Cell Technology	mo-c-Si
	Module Length (m)	1.658
	Module Width (m)	0.992
	Module Colour	black
	Module Transparency	opaque
	System Size (kW)	21.39
	First year energy (kW)	17765.57889716739
	Life cycle Cost (LCC) (AUD)	40479.34
	Life Cycle Energy (LCE) (kW)	496071.0

B	IPV Modul	e Sele	ect	or					*		
more	BIPV module	es:									
ny M											
ributor M											
Module_4											
tributor M											
BI	PV_/)I	Μ									
ny L											
	Building Pow	/er data									
	ENABLE PE	AK OFF-	PEA	NK C/	ALCULA	TIO	N				
	Electricity Price	e (AUD/k	wh	<u>):</u>		0	100				
	Time of Use:					0.	122		•		
—	Time of ode.										
\sim	Peak Price	0.24		-			7:00 AM		-		
\sim	Off-peak Pric	0.19		•			11:00 PM		•		
	Feed-in-Tariff	(AUD/kW	<u>/h)</u>								
	Flat Rate:					0.	102		÷		
	Time of Use:										
	Peak Price	0.102	*				7:00 AM		÷		
-	Off-peak Price	0.091	*				11:00 PM		* *		
-	State					N	ew South Wa	les an	. ~		
-	CO ₂ Coefficien	t:	0.	81							
	Building Energ	y Consur	npt	ion(k	(W)						
	Annual Energy	rgy Consi	ump	tion:		0.	00		-		
	O Hourly Ener	rgy Consu	Imp	tion:							
-											

Placement and Visualization

Optimization

Optimise BIPV Placement		?	\times									
hoose Optimisation Preferences												
erformance Criteria												
Maximize Life Cycle Enegy (LCE)												
Minimize Life Cycle Cost (LCC)												
Decision Variables (to be optimized)												
Rainscreen or Cladding												
BIPV Product Add all as	s per BIPV product requirem	ents										
BIPV/ 310M												
/ "P-1":-" /3												
√ "P-I,*"												
Z Tilt angle dict_	values([75, 80, 85, 90])											
Window-to-Wall Ratio (WWR)												
Distance-to-Length (D/L) Rati	D											
Constraints												
Pavback Period	DV Life Span											
Net Present Value (NPV) >	0											
Optimization algorithm confid	urations											
nitial Population	2	\$										
Number of generations	2	\$										
	Pup Optimization											
	Run Optimization											

	Cuboid002 Face6_tilt	Cuboid002 Face6_PV placement	Cuboid002 Face6_No of PVs	PV Type	PV name	Manufact urer Type	t PV Life 9 Span	Optimized Life Cycle Cost	life_cycle _cost_dis counted (AUD)	Life Cycle Energy	Payback Period	NPV	Capital Cost	LCOE	First Year Energy Generati on	System Size	Total No of modules
c	22.5	. 1	. 56	109	1	۱n	25	20627.37	17520.54	391545	5.403	25029.84	14351.49	0.052682	16621.93	6.72	56
1	20) 1	. 63	105	5 1	in	30	45657.95	36959.39	898532	10.72	51731.22	29112.27	0.050814	32178.74	19.53	63

Wind load calculation

Optimization

Automatic BIPV placement

BIPV Design Optimisation

Wijeratne, W.P.U., Samarasinghalage, T.I., Yang, R.J. and Wakefield, R., 2022. Multi-objective optimisation for building integrated photovoltaics (BIPV) roof projects in early design phase. *Applied Energy*, *309*, p.118476.

Mudiyanselage, P.W., Samarasinghalage, T., Yang, J. and Wakefield, R., 2022. Multi-objective optimisation for Building Integrated Photovoltaics (BIPV) roof projects in early design phase. *Applied Energy*, *309*(March 2022), pp.1-21.

BIPV Design Optimisation

Wijeratne, W.P.U., Samarasinghalage, T.I., Yang, R.J. and Wakefield, R., 2022. Multi-objective optimisation for building integrated photovoltaics (BIPV) roof projects in early design phase. *Applied Energy*, *309*, p.118476.

Geospatial analysis and simulation of urban dynamics

Building envelope aspect angle

Building envelope slope angle

Shading simulation and visualisation

Liu, C.; Yang, R., W, K., Zhang, J. (2023) Community-Focused Renewable Energy Transition with Virtual Power Plant in an Australian City—A Case Study, Buildings, March 2023

Shading casting on roof and wall

Shadow volume calculation using sun path algorithm – Determine the volume of space in shadow cast by surrounding objects determined by the sun movement at a certain time

Roof shadow logical raster (1-no shading; 0-shading) and numeric result (4000 x 4000 data array)

Wall shadow height raster and numeric result (4000 x 4000 data array)

Wall sunlight height raster and numeric result (4000 x 4000 data array)

Liu, C.; Yang, R., W, K., Zhang, J. (2023) **Community-Focused Renewable Energy** Transition with Virtual Power Plant in an Australian City—A Case Study, Buildings, March 2023

Machine-learning based image recognition for building elements

200

Urban level building envelop solar potential mapping and analysis

Task 15 BIPV - Subtask D: Digitalization for BIPV

Upcoming reports

Technology Collaboration Programme

To facilitate the application of BIPV over the whole value chain by defining the **requirements for digital product data models in a BIM-based process**

- 1. Understanding the various approaches in using digital product data models for multifunctional BIPV systems
- 2. Enabling manufacturers, planners and owners of BIPV systems to define digital product data models
- 3. Defining requirements in compliance with BIM standards
- 4. Making **BIPV products more easily accessible** thanks to digitization of the AEC process

Objectives:

<u>1. Current BIM-based tools for BIPV</u>

Definition of the BIPV process stages and workflows and review of current available BIM-based tools.

2. Collection of BIM-BIPV case-studies

Collection of 5-6 BIPV case-studies where BIM has been adopted. Interviews to identify needs to overcome current bottlenecks and support process optimization towards a greater interoperability.

3. Information Management (IM) strategies for improving the main BIPV process stages

Definition of digitalization goals, workflows and IM structure to support an integrated and interoperable process for BIPV

D.1 Comparison of BIPV real data with simulated performance

- Lead by RMIT, Astrid Schneider, Lucisun

Goal: overview of state of the art software for BIPV-planning and BIM / 3D simulation

- PVsyst
- Revit
- Rhino Plugins: Honeybee with energy Plus / radiance
- SAM
- Sketchup
- PV*Sol
- Solarius PV
- Lucisun
- BIMSolar

D.1 Chinese Building representation in different 3D-formats

Rhino with Grasshopper, ladybug

SKETCHUP

Revit

Rhino

Weerasinghe, R.P.N.P., Yang, R.J., Wakefield, R., et. al., 2021. Economic viability of building integrated photovoltaics: A review of forty-five (45) non-domestic buildings in twelve (12) western countries. *Renewable and Sustainable Energy Reviews*, *137*, p.110622.

D.5: Data mining for decision-making – Method - Lead by RMIT

BIPV product ref. efficiency Electricity price BIPV Product cost

STC – BIPV in the Digital Environment (2024-2027)

- BIPV Product properties
- IFC-BIPV Digital Representation
- BIM –based BIPV digital products and project simulation

Express of Interests!

Australian BIPV Alliance aims to enable collaborations within the entire stakeholder ecosystem cross different industry sectors in addressing design, technical, practical, policy and standard related issues in BIPV adoption, showcasing good practices, filling in industry knowledge gaps and providing training opportunities.

36

SEAL@RMIT Thank you!

Contact: Rebecca Yang rebecca.yang@rmit.edu.au

UNIVERSITY