General presentation of IEA SHC Task 53

Tim Selke - 20/04/2017 - Messina

Task 53

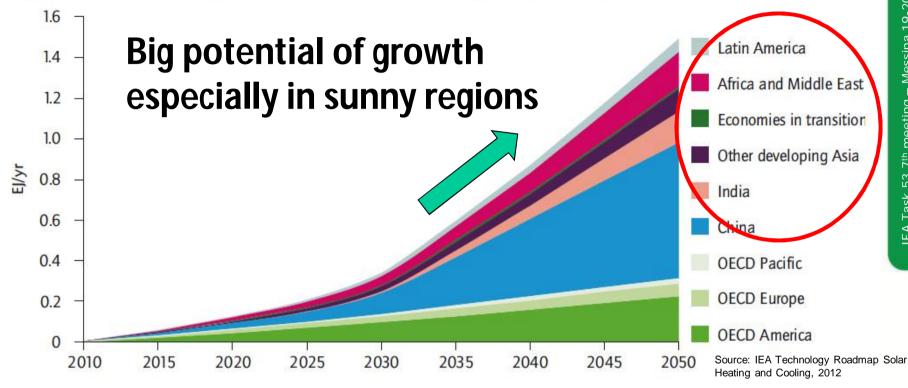
Energy challenges for sunny countries

Commitment of the countries to reach ambitious objectives and scale up Renewable Energy and Energy Efficiency measures

Very important share of the energy consumption due to air conditioning

One huge advantage in the sunny regions:

Infinite resource with the SUN!


How to go and spread cost competitive solar cooling?

IEA Technology Roadmap SHC – *Market potential by 2050*

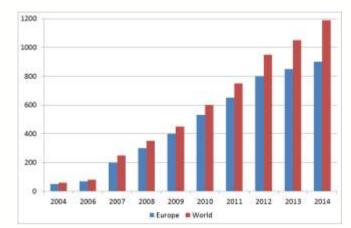
Figure 16: Roadmap vision for solar cooling (Exajoule/yr)

 $1.5 \times 10^{18} \text{ J/a} = 416.7 \text{ TWh/a Solar Cooling by } 2050$

Systems could enter the market between 2015 and 2020

2 main channels in 2017 for Solar Cooling

CHILLER / AIR CONDITIONER



Solar cooling market trends in the World

Still a niche market:

≈ 1,200 systems installed worldwide (2015)

A High level of innovation still present:

Source: Solem Consulting / TECSOL

IEA SHC Task 53

- * Heat rejection
- * Electric consumption reduction
- * kWh cooling cost decrease

Already very accurate concepts for Arabic countries

- * low & medium temperature solar thermal absorption
- * small size PV air-conditioning

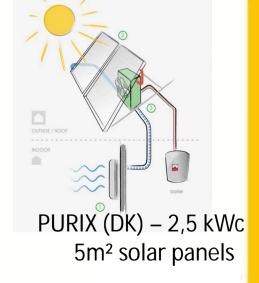
Need of a new Generation solar cooling systems

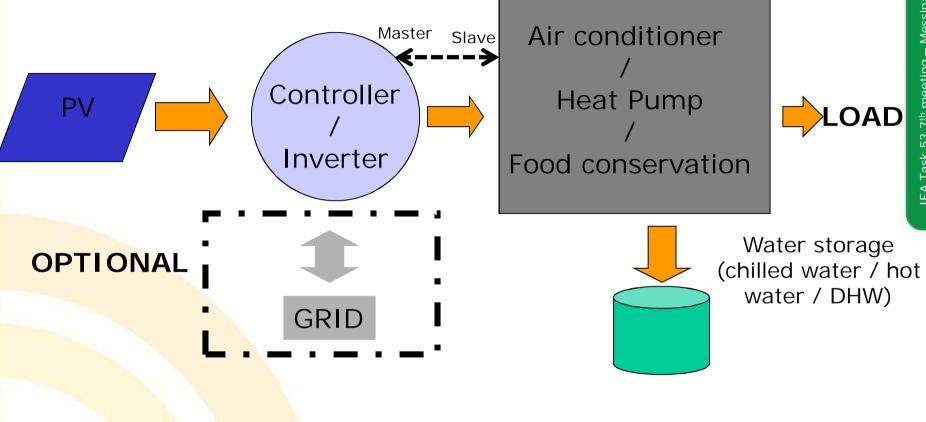
Solar thermal « traditionnal » cooling has difficulty to emerge as a economically competitive solution

Main reasons:

- Technical: Limit on adaptability due to hydraulics, complexity
- **Economical**: High upfront cost, especially for small systems

⇒ Still need intensive R&D for quality improvement and best solution selection (ongoing IEA SHC Task 53)


⇒ Very innovative concepts such...


SOLABCOOL (NL) 4,5 kWc

Example of Basic concept for the PV approach

Main categories

Solar air conditioners : Splits

PV+ HP coupling for Office/Commercial

Task 53 Structure

Subtask A

Components,
Systems & Quality

Subtask B

Control, Simulation & Design

Subtask C

Testing and demonstration projects

Subtask D

Dissemination & market deployment

4 Subtasks & 19 activities

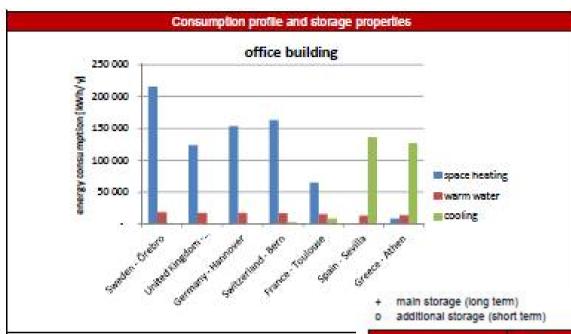
Time Schedule: 4,5 years

From March 2014 to June 2018

Task 53 new developments & progress

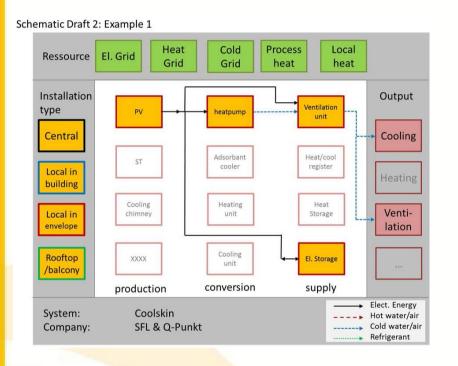
Subtask A: Components, Systems & Quality

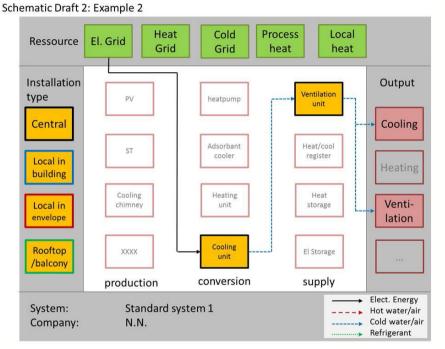
Logo	Manufacturer, country	Market status	Service	Solar input type	Nominal cooling capacity (kW or m³/h)	Nominal heating capacity (kW)	Nominal solar input (Wp for PV and m² for ST	Cooling Storage	Target market area	Heat rejection	Back up	Other	Website
ATISYS Concept	ATISYS, France	R&D	Cooling/ heating	PV	4kW	5.1 kW	4.6kW	Sensible tank	France, Northern Africa	Air	Grid	R290 chiller, short term elec, battery	www.atiya- concept.com
ClimateWell	CLIMATEWELL, Sweden	R&D	Cooling/ heating/DHW	ST	40 kW	108 kW	180 m²	Sensible tank	Europe, sumy countries	Air	Electric chiller (390 kW)	Adsorption (LiCVH20)	www.climatewell.com
FREECOLD	FREECOLD, France	Commercial	Cooling	PV	2.5 kW	No heating	1.5 kW	Da	Africa, developing countries	Air	Grid	solar input 24VDC, elec. battery possible	www.coldimov.com/sn
freescoo	FREESCOO, Italy	R&D	Cooling/ heating	ST/PV	500 m³/h	1.44 kW	2.4 kW	28	Italy	Air		Desiccant technology	www.freescoo.com/sola niment
GREE KP	GREE. China	RAD	Cooling/ heating	PV	33.5 kW	37.5 kW	12.2 kW	None	China	Air	Grid	VRF	www.greeac.com
Kousun - hoped	KAYSUN, Spain	Commercial	Cooling/ heating	PV	3.5 kW	3.5 kW	0.7 kW	None	Spain, Europe	Air	Grid	Scroll, no battery	www.kaysun.es/es
Pucix	PURIX, Denmark	Commercial	Cooling/ heating	ST	2.5 kW	3.6 kW	4.8 m ²	None	Europe, sunny countries	Air	Boiler	Absorption (LiBr/H20)	www.puris.com
senr	SENR, France	Commercial	Cooling/ heating	PV	3.6 kW (split) 45 kW (VRF)	3.6 kW (split) 50 kW (VRF)	0.65 kW (split) 20 kW (VRF)	None	France, Europe, sunny countries	Air	Grid	Scroll, battery possible	www.sem.fr
SolabCool	SOLABCOOL, Netherlands	RAD	Cooling/ heating	ST	4.5 kW	8 kW	13.3 m²	None	Europe, sunny countries	Air	District heating	Silicagel- water adsorption cooling machine	nana solabcool com
YAZAKI	YAZAKI, Japan	R&D	Cooling/ heating	ST	35 kW	60 kW	0.1 kW	Sensible tank	China	Air	Electric chiller (29.3 kW)	Absorption (LiBe/H20)	nww.yazaki- group.com/global


Overall presentation of the data collection on innovative solar cooling and heating systems among IEA SHC Task 53

State of the art of new generation commercially available

Subtask A: Components, Systems & Quality


Consumption profile and storage properties for office buildings in European cities


Estimation of the most economical storage technology for an office building depending on its location.

	Office building – northern climate zone	Office building – middle climate zone	Office building — southern climate zone
UTES	+	+	++
ATES	+	+	+
Pit storage	+	+	+
Solid media	0	0	0
PCM	0	0	0
Ice storage	0	++/0	++/0
Hot and cold water tank	++	+/0	0

Subtask A: Components, Systems & Quality

Report on a new and universal classification method "new generation solar cooling square view" for generic systems

(A4 : System integration)

Subtask B: Control, Simulation and Design

Ongoing set up work of building TRNSYS models for simulating reference systems

Warning: so far, no climatic conditions out of Europe (research of new contributors)...

OFF						
Sketch and picture						
Zoning						
Zone height/width/depth	3.0 / 4.5 / 6.0 m Ceiling height 2.8 m					
Zone floor area / volume	27 m ² / 81 m ³					
Office area per floor	6 to 12 offices per floor					
Number of floors	3 to 7					
Roof type	Flat concrete roof					
Glazing ratio	30 % to 60%					

Definition for reference conditions

(B1: Reference conditions)

Subtask C: Testing and demonstration projects

Task 53 🗱

Final draft report (including ST & PV)

Deliverable D-C1.2 – Adapted Monitoring Procedure for New Generation Solar Heating & Cooling Systems Final Draft

Date: 17.05.2016

By Bettina Nocke¹, Daniel Neyer², Alexander Thür ³, Karl Berge

¹Institution AEE - Institute for Sustainable Technologies Address A-8200 Gleisdorf, Feldgasse 19

Phone +43 3112 5886221

e-mail D.Hocketyaee.ac

Address Technikerstrasse 19a, A-6020 innsbruck

e-mail: daniel.neyer@uibk.ac.at

*Institution AIT Austrian Institute of Technology GmbH Address Giefinggasse 2, A-1210 Vienna

Phone +43 50550 6276 e-mail: kari.berger@ait.ac.at

Monitoring procedure KPI's

Reference conditions

Example

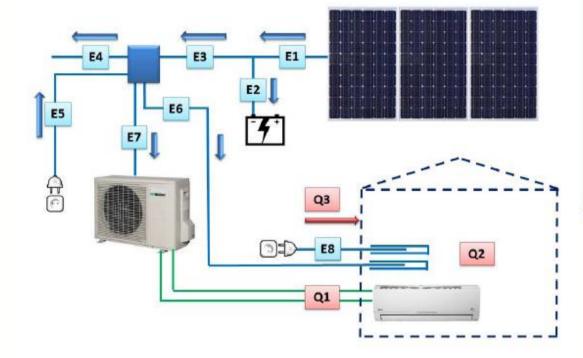


Figure 2 PV driven solar heating and cooling system of a HVAC installation.

Monitoring procedure for field test & demo systems (C1: Monitoring procedure & monitoring system selection criteria)

Task 53 communication

Workshops / conferences dealing with Task 53

(Workshop/Conference/Seminar include type: Task organized, keynote, presentation, poster, etc.)	Activity & Presenter (keynote, presentation, poster, etc.)	Date & Location	Number of Participants	If Hosted by Task # Industry, Government, Research, Countries	
	6 th OTTI SAC conference	keynote	Roma, 24/09/2015	80	OTTI 6 th SAC conference	
	SHC 2015 conference – Keynote on solar cooling	keynote	02/12/2015 - Istanbul	100	IEA SHC Programme	
	SHC Task53 / PVPS Task1 Join Workshop	presentations	Madrid 11/04/2016	35	IEA SHC /PVPS Programme	
	IEA SHC Task 53 Industry Workshop	presentations	Madrid 11/04/2016	50	IEA SHC Programme	

≈ 260 persons «reached by Task 53 commnication during 4 events

Task 53 is better known in Spain!

Task 53 Website

New Generation Solar Cooling & Heating Systems (PV or solar thermally driven systems)

Overview

The main objective of this Task is to assist a strong and sustainable market development of solar PV or new innovative thermal cooling systems. It is focusing on solar driven systems for both cooling (ambient and food conservation) and heating (ambient and domestic hot water).

The scope of the Task are the technologies for production of cold/hot water or conditioned air by means of solar heat or solar electricity, i.e., the subject which is covered by the Task starts with the solar radiation reaching the collector or the PV modules and ends with the chilled/hot water and/or conditioned air transferred to the application. However, although the distribution system, the building and the interaction of both with the technical equipment are not the main topic of the Task this interaction will be considered where necessary.

Task Information

OPERATING AGENT

Dr. Daniel Mugnier FRANCE

+33 4 68 68 16 42 fax: +33 4 68 68 16 41

daniel.muqnier@tecsol.fr

What's New NEWS MEETINGS PUBLICATIONS Check Back Soon

News

Publications

Related Sites

Member Area

Contact

Thanks for your attention!

<u>Contact</u>: *Daniel Mugnier*, TECSOL

daniel.mugnier@tecsol.fr

