

Phase Change Materials (PCMs) for energy storage in Thermal Solar Cooling Systems

Andrea Frazzica Valeria Palomba Vincenza Brancato

ITAE - INSTITUTE FOR ADVANCED ENERGY TECHNOLOGIES NICOLA GIORDANO

Task 53 Workshop

"NEW GENERATION OF SOLAR COOLING AND HEATING SYSTEMS DRIVEN BY PHOTOVOLTAIC OR SOLAR THERMAL ENERGY"

- ✓ Introduction
- ✓ Latent Thermal Energy Storage
- \checkmark Example of latent TES for solar cooling
- \checkmark PCMs for solar cooling applications
- ✓ Design and testing of latent TES @ ITAE
- ✓ Conclusions and future perspectives

INTRODUCTION

Why do we need a TES?

Main functions

- Supply-demand matching
- Peak shaving
- Flexibility

Main parameters

district heating heat pumps C(C)HP

Field of application of thermal storage

- Quality
- Capacity
- Storage density
- Power

[°C] [GJ] [GJ/m³] / [kJ/kg] [kW]

INTRODUCTION

Consiglio Nazionale delle Ricerche

INTRODUCTION

TES technologies

Sensible heat

- Heat capacity of materials
- Water, solids (e.g. concrete, rocks)

Latent heat

- Phase change
- Water, organic and inorganic PCMs

Thermo-Chemical heat

- Physical or chemical bonds
- Adsorption, absorption, chemical reactions

LATENT THERMAL ENERGY STORAGE

Latent TES concept

Key points:

- Working temperature interval
- Latent and Specific Heat of PCM

EXAMPLE OF LATENT TES FOR SOLAR COOLING

Few examples in literature about experiments on latent TES for solar cooling

MT storage Realization and testing of a latent heat storage supporting the heat rejection of an absorption chiller

- 1. Dry cooler+latent TES can substitute the wet cooling tower
- 2. Increased absorption chiller performance allows to reduces the over-sizing of the solar collector system.
- 3. Latent TES power of 10 kW and storage capacity of 120 kWh has proven the feasibility of the storage concept.
- 4. Positive effect on the SEER (inclunding winter operation) and high system reliability (more than 800 cycles performed)

* "Solar heating and cooling system with absorption chiller and low temperature latent heat storage: Energetic performance and operational experience"– M. Helm, C. Keil, S. Hiebler, H. Mehling, C. Schweigler; International Journal of Refrigeration; 32, 596-606, 2009.

PCMs FOR SOLAR COOLING APPLICATIONS

нт	Literature survey								
storage			Material	T _m [°C]	LATENT HEAT [kJ/kg]	DENSITY [g/cm ³]	STABILITY		
			α-Naphthol (99%) Sigma-Aldrich®	96	163	N.A.	S)		
		Organics	Xylitol (99%) Sigma-Aldrich®	94	263.3	N.A.	53		
Pure Chem		Organics	D – Sorbitol (98%) Sigma-Aldrich®	97	185	N.A.	SP.		
	/IICALS		Acetamide (~99%) Sigma-Aldrich®	81	241	1.159	57		
		Inorganics / Hydrated Salts	KAI(SO ₄) ₂ ·12H ₂ O (98%) Sigma-Aldrich [®] (CODE: APSD)	91	184	N.A.	(P)		
			(NH ₄)Al(SO ₄) ₂ ·12H ₂ O (99%) Sigma-Aldrich [®] (CODE:AASD)	95	269	1.640	5		
Commer PCMs		Organics	Plus-ICE A82 PCM prodcucts [®]	82	155	0.850	A state		
	RCIAL IS	Inorganics / Hydrated Salts	Plus-ICE S83 PCM prodcucts [®]	83	141	1.600	E)		
			Plus-ICE S89 PCM prodcucts [®]	89	151	1.550	E)		

* "Identification and characterization of promising phase change materials for solar cooling applications"– V. Brancato; A. Frazzica; A. Sapienza; A. Freni; Solar Energy Materials & Solar Cells; 160, 225-232, 2017.

Consiglio Nazionale delle Ricerche

 $\mathbf{\Gamma}$

Latent TES design: finned tubes

Tube:

- 1D model
- Developed fluid flow
- Radial thermal gradient negligible
- Nu-correlation for heat transfer between tube and fluid

Fin and PCM:

- 3D model
- Half a fin and half a fin gap with PCM
- Convection in liquid state of the PCM is negligible
- Volumetric expansion of the PCM during phase change is neglected

Coupling by heat flow and temperature at inner tube wall

Latent TES design: finned tubes

Latent TES design: finned tubes

FIN-AND-TUBES HEX

- AISI 416L
- 48 FINS x 5 mm gap
- 4 ranks
- 400x650x350mm
- 38 kg PCM

Testing rig

- Simulation of realistic working boundaries
- Fully automatic operation (charging/discharging)

Consiglio Nazionale delle Ricerche

Andrea Frazzica – andrea.frazzica@itae.cnr.it

Max heating power 24 kW

Testing conditions

STATIC TESTS								
CHA	ARGE	DISCHARGE						
Parameter	Value	Parameter	Value					
Flow rate [kg/min]	5,10,13.5,17.5, 20	Flow rate [kg/min]	3.5,5,10,13.5, 17.5, 20					
Initial temperature [°C]	20, 25, 30, 45, 50, 55, 65, 75	Initial temperature [°C]	83, 85, 86, 88, 90, 92					
Final temperature [°C]	85, 88, 90, 92	Inlet temperature [°C]	65, 70, 75					
Inlet temperature [°C]	85, 90, 94	ΔΤ _{0-fin} [°C]	7, 12, 15, 20					
DYNAMIC TESTS								
Para	meter	Value						
Charge/discha	arge time [min]	10, 15, 20, 30, 45						
Flow rate	e [kg/min]	10, 20						

Measured parameters

Charge/discharge energy: $E = \int_0^{\tau_{fin}} \dot{m}c_p (T_{in} - T_{out}) \cdot d\tau$

Charge/discharge efficiency:

Average charge/discharge power:

$$P_{ave} = \frac{\int_{0}^{\tau_{fin}} \dot{m}c_{p}(T_{in} - T_{out}) \cdot d}{\tau_{fin}}$$

$$\varepsilon_{ch} = \frac{E_{th,ch}}{E}$$
$$\varepsilon_{disch} = \frac{E}{E_{th,disch}}$$

Consiglio Nazionale delle Ricerche

Andrea Frazzica – andrea.frazzica@itae.cnr.it

τ

Static tests: charging

Consiglio Nazionale delle Ricerche

Static tests: discharging

Effect of the varied parameters

PARAMETER	VARIATION RANGE	POWER	ENERGY					
CHARGE								
Flow rate	3.5 – 20 kg/min	60%	20%					
Inlet temperature	90°C – 96 °C	30%	13%					
DISCHARGE								
Flow rate	5 – 21 kg/min	40%	-10%					
Inlet temperature	65°C – 75 °C	-80%	-20%					
ΔT initial-final	7.5 - 20 °C	120%	10%					

CONCLUSIONS ...

✓ Latent TES can represent a viable solution to increase the compactness of TES for solar cooling applications

- ✓ A TES density 50% higher than sensible water-based systems have been achieved for a finned-tubes latent TES designed, realized and tested @ ITAE labs
- ✓ Discharging efficiencies up to 60% over theoretical ones have been measured
- Still, low heat transfer efficiencies and low power densities have been achieved

... AND FUTURE ACTIVITIES

✓ Second generation of latent TES for solar cooling applications, with higher heat transfer efficiency, realized and tested in lab

- ✓ Test of other classes of PCMs (e.g. hydrated salts) and proper additives to increase thermal conductivity
- ✓ Field test in small scale solar cooling plant, to verify the performance under real working boundaries
- ✓ Extension of the activity towards solar cooling systems driven by concentrating solar collectors (T>120°C)

Thank you Thank Aon

Phase Change Materials (PCMs) for energy storage in Thermal Solar Cooling Systems

Andrea Frazzica Valeria Palomba Vincenza Brancato

Acknowledgements:

Supported by Italian Ministry for the Economic Development: "AdP MSE-CNR per la Ricerca di Sistema elettrico".

